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C H A P T E R  1  

Introduction 

BACKGROUND 
Compaction is one of the most critical steps in roadway construction, which ultimately determines the 

performance and service life of the pavement [1]. A desirable design of the pavement material could still 
perform poorly if it has not acquired proper compaction. Linden et al. [2] found that a 1% increase in air 
voids of asphalt pavement can lead to about a 10% loss of its service life if using 7% as the target air voids, 
while 3% or fewer air voids could be more likely to have thermal expansion and unstable issues. However, 
measuring the air voids or compaction condition is tricky, especially in the field. Current approaches to 
determine the pavement's compaction are mostly based on the engineers' experiences, the density 
measurement device (e.g., nuclear density gauge and non-nuclear density gauge), and core-taking at 
selected spots. These post-compaction methods either destroy the unity of the pavement or lack 
representation of the compaction condition of the whole pavement [3-5]. On the other hand, the calibration 
of the density gauges is not flexible for different types of pavement structures and material designs. Test 
sections need to be constructed beforehand to establish the correlations between pavement density and 
compaction patterns (passes, speed, vibration amplitude, mode, etc.). Once the compaction pattern is 
determined, the established correlation can hardly be adjusted accordingly. The uniformity and compaction 
quality along the entire pavement construction cannot be guaranteed.  

Intelligent compaction (IC) technology was then invented to collect a variety of real-time field data to 
supplement engineers' experience and improve compaction quality and uniformity of infrastructure 
materials. IC technology equips the vibratory rollers with the highly accurate Global Positioning System 
(GPS), accelerometers, onboard computers, and infrared thermometers for compacted material feedback 
control [6]. IC technology can collect real-time compaction information at 100% pavement coverage, 
including the number of rolling passes, surface temperature, and pavement responses. The collected 
information is displayed on the screen to help engineers to make appropriate decisions so that compaction 
uniformity can be effectively guaranteed. This technology was initially applied to soil compaction, and the 
intelligent compaction measurement value (ICMV) shows a consistent correlation with the soil density at 
its desirable moisture content. However, for other granular materials and multilayer pavement structures, 
such as asphalt pavement, the correlation between the ICMV and materials density is unstable and 
inconsistent. The data collected by the IC system are the external responses of the entire structure instead 
of only a specific layer [7], which is mainly attributed to the inconsistent correlations between the ICMV 
and the compactability of the granular materials. In addition, the interaction between the granular materials 
and the roller drums also hinders the establishment of this correlation [7, 8].  

Considering the difficulties of using external responses to evaluate pavement compactability, many 
scholars tried to understand the kinematic and mechanical behaviors of the particulate aggregates during 
compaction. For the flexible pavement, the mineral aggregates consist of about 95% mass of the asphalt 
mixture, and most external loads are borne and transmitted by the skeleton of the mineral aggregates. The 
behavior of the particulate aggregates should be related to the compaction and densification of the materials. 
How to monitor particle behavior during compaction is the key question to be addressed.  



 2 r3utc.psu.edu 

In recent decades, different sensors and devices have been applied in pavement engineering to assess 
pavement conditions and construction quality. For example, the image acquisition system was used to 
collect the surface damages and assist the decision-making for pavement management [9]. Fiber Bragg 
grating (FBG) sensors were frequently used for the long-term performance monitoring of infrastructures in 
a harsh environment, which is effectively promising compared to conventional strain gauges [10]. Ground 
penetrating radar (GPR) was applied to detect internal pavement distress according to the propagation and 
reflection of the electromagnetic wave [11]. The smartphone would collect the external acceleration of the 
moving vehicle on the pavement to assess the surface roughness of the pavement [12]. These tools can 
successfully evaluate the conditions of the existing pavements by analyzing the related image or kinematic 
data at the intermediate temperature. However, the high-temperature condition is still challenging for most 
of the sensors. The high-temperature environment of the asphalt mixture impeded the application of many 
devices in compaction research.  

SmartRock is a prototype particle-size wireless microelectromechanical system (MEMS) sensor, which 
has a high survival rate in high- and intermittent-temperature environments. SmartRock has been 
implemented to research the compaction behaviors of particulate materials and trace the kinematic 
behaviors of particles during compaction. Wang et al. [4] first introduced the SmartRock in the laboratory 
compaction and found that the internal particle rotation during compaction strongly correlates with the 
density of the asphalt mixture. In addition, the particulate materials present different motions and rotations 
under different types and amounts of compaction efforts, which were used to evaluate the skeleton strength 
and stability of the structure [13, 14]. The particle rotation during compaction has also proven to be an 
appropriate indicator of the mixture's workability. The novel evaluation method is sensitive to different 
mixture designs and compaction conditions [15]. In addition to the particle rotation, the acceleration and 
contact stress between particles are related to the process of compaction with the aid of the SmartRock 
sensor. Cheng et al. [16] and Zhang et al. [17] have found that particle contact stress correlates with skeleton 
formation and mixture densification and can be used to determine the mixture's locking point. The intensity 
and duration of the particle's acceleration under compaction are also related to the locking condition of the 
aggregate particles [18]. Other research on the Marshall hammer compaction notes that the intensity and 
duration of the particle's acceleration respond differently at different compaction stages, which can evaluate 
the locking condition of the aggregate particles [18]. Compared with the unstable external responses, the 
internal particle behaviors have been verified to be well correlated with the compactability of the granular 
materials and multilayer pavement structure. Therefore, the internal particle responses during compaction 
should be seriously considered and investigated for compaction research. 

With advancements in artificial intelligence (AI) and data-sensing technology, the integration of sensors 
and data-based approaches such as machine learning (ML) have been widely applied in pavement 
engineering. Researchers have developed various ML models to evaluate pavement roughness and predict 
its remaining service life. Researchers such as Souza et al. [19], Nabipour et al. [20], and Marcelino et al. 
[21] developed ML models to evaluate the pavement condition and predict its remaining service life. The 
reasonable predictions confirmed that ML could be an optimization tool in pavement management systems. 
Data-based approaches were applied to capture the traffic information in the road network. Kwigizile et al. 
[22], Amorim et al. [23], and Zhang et al. [24] combined AI and data-sensing technologies and developed 
different algorithms and neural networks to classify and monitor the types, loads, and speeds of vehicles. 
The accurate evaluation offered reliable inputs for the pavement structural design. For the more complex 
performance prediction, ML models and programs can predict the dynamic modulus of asphalt concrete 
efficiently and accurately. Eleyedath et al. [25] established a novel hybrid ML, and Behnood et al. [26] 
developed biogeography-based programming (BBP) to predict the dynamic modulus of asphalt concrete. 
The results from both studies specified that the proposed model offers an efficient and accurate prediction 
for the dynamic modulus. The ML prediction even outperformed the traditional mechanical models, such 
as the Witczak and Hirsch models [25, 26]. Given the successful application of machine learning and 
sensors in engineering, it is a promising and practical way to integrate AI and sensing technology into the 
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construction of infrastructure materials and help to improve construction quality and achieve more resilient 
infrastructure. 

OBJECTIVES 
The compaction mechanism of particulate infrastructure materials has been studied for decades, yet the 

relationship between the particle level of responses and compaction is still unclear. Such a knowledge gap 
causes the disconnection between the laboratory and field compaction and hinders the development of more 
advanced and intelligent compaction technologies. This project undertook to discover the compaction 
mechanism by understanding the particle kinematic and mechanical behaviors from the mesoscale (particle 
scale) and establishing a connection between the lab and field compaction. It utilizes an innovative particle-
size wireless sensor, the SmartRock, to monitor the particle kinematic behaviors of asphalt mixture and 
granular materials during compaction.  

 On the other hand, for the multilayered pavement and granular material compaction, the interaction 
between the materials and roller compactors is sophisticated, often confounded by many factors such as 
climate, subgrade condition, and variability in compactors. The second objective of the project is to develop 
compaction monitoring models that determine the density condition of the asphalt pavement based on 
particle kinematics. Specifically, it will: (1) identify critical parameters and input variables for compaction 
prediction of asphalt mixtures and (2) establish intelligent models to predict the compaction condition and 
density of the asphalt pavement to improve the compaction quality of the asphalt pavement.  
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C H A P T E R  2  

Methodology 

To achieve the objectives, a wireless MEMS sensor, SmartRock, was used to collect particle behaviors 
during compaction. With these compaction data, two phases of analysis were conducted: (1) Investigate the 
compaction mechanism from mesoscale and understand the kinematic and mechanical behaviors of the 
particle material under the compaction efforts. Both granular materials and asphalt mixtures would be used 
to investigate the compaction mechanisms under the laboratory and field compaction. (2) Develop an 
intelligent model based on the compaction mechanism to predict the densification of the pavement. Such 
models will be built based on AI techniques and ML algorithms. It can predict the compaction condition or 
the density of the pavement so that a wise decision about the compaction will be made. With the compaction 
knowledge and prediction model, reasonable compaction strategies can be developed and resilient 
infrastructure can eventually be constructed. The concept and scope of the proposed work are illustrated in 
Figure 1.  

 

 
 

Figure 1. Schematic figure of the research methodology. 
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C H A P T E R  3  

Materials and Experiments 

MATERIALS 
The granular material and asphalt mixture were studied to investigate their compaction mechanism 

under loadings. The gradation of the granular material is from the Federal Aviation Administration (FAA) 
Item P209 base material (as shown in Table 1). Eleven asphalt mixtures are included in this study to capture 
the particle compaction behaviors. These mixtures differ in material type, gradation, mixing methods, 
compaction temperatures, etc. All mixtures' information and gradation curves are summarized in Table 2 
and Figure 2. 

Table 1. Gradation of the FAA Item 209 base material. 
Sieve Size  

(in) 
Sieve Size 

(mm) 
Design  
Range 

Selected 
Gradation 

2 50 100 100 
1-1/2 37 95-100 100 

1 25 70-95 87 
¾ 19 55-85 70 

No. 4 4.75 30-60 45 
No. 30 0.6 12-30 21 
No. 200 0.075 0-8 4 

Table 2. Design for the asphalt mixtures. 
No. Technology NMAS RAP OVAC Asphalt Temp Mixing 

1 HMA 12.5 15% 5.8% PG64-22 135 ℃ Plant 
2 HMA 9.5 15% 5.9% PG64E-22 135 ℃ Lab 
3 HMA 12.5 0% 5.9% PG64-22 110 ℃ Lab 
4 HMA 12.5 0% 5.9% PG64-22 143 ℃ Lab 
5 0.35% Evotherm 12.5 0% 5.9% PG64-22 127 ℃ Lab 
6 0.7% Evotherm 12.5 0% 5.9% PG64-22 110 ℃ Lab 
7 0.7% Evotherm 12.5 0% 5.9% PG64-22 143 ℃ Lab 
8 Smart Foam 9.5 15% 5.9% PG64E-22 135 ℃ Plant 
9 HMA 12.5 25% 5.9% PG64-22 135 ℃ Plant 

10 Smart Foam 9.5 15% 5.9% PG64E-22 135 ℃ Plant 
11 Foam 9.5 15% 5.8% PG64S-22 135 ℃ Plant 

Note: NMAS means nominal maximum aggregate size; OVAC is the optimal virgin asphalt content; Temp 
represents the compaction temperature. 
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Figure 2. Gradation of the asphalt mixtures. 

SMARTROCK SENSOR 
SmartRock (Figure 3) is a novel wireless particle sensor. The initial version of SmartRock (Figure 3a) 

is used in railroad engineering to study the effect of ballast lateral stability [27, 28]. As its size is smaller 
(Figure 3b), it has been applied in pavement engineering and material compaction [4, 24]. In this project, 
the SmartRock is a cubic shape with 27 mm length (as shown in Figure 3b). A thermoplastic polymer shell 
can protect SmartRock from moisture or high-temperature environments up to 150 ℃. SmartRock can 
record real-time tri-axial acceleration, tri-axial rotation, three-dimensional pressure, and temperature. The 
sensor and the adaptor are connected and communicated via Bluetooth Low Energy (BLE) technology 
(Figure 3c) and the data acquisition system in the field (Figure 3d). The compaction data would be 
simultaneously transmitted to the adapter or computer during compaction. The SmartRock sensor has the 
"working mode" and "sleep mode" (low energy–consuming mode) to deal with different scenarios. The 
sleep mode can save a lot of battery power so that the service life can be significantly extended. The 
sampling frequency of the sensor is also adjustable, and the related information is shown in Table 3. 
SmartRock has prominent advantages in convenience, durability, reusability, and stability compared to 
traditional sensors. Its size and wireless data transmission technology reduces disturbances to material 
movement during data collection.  It has been verified by several projects in railway engineering and 
pavement engineering [4, 24, 27, 28]. Therefore, the SmartRock monitoring system was selected in this 
study to collect data. 

 

       
(a)                               (b)                                (c)                          （d） 

Figure 3. (a) Initial version of SmartRock with angularity, (b) particle-size SmartRock, (c) 
SmartRock receiver, and (d) wireless data acquisition system. 
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Two coordinate systems exist during data collection: local coordinate and global coordinate. To analyze 
the particle compaction data on the same coordinate, the coordinate transformation matrix would convert 
the data from the local coordinate to the global coordinate system. The coordinate transformation between 
global and local coordinates can be achieved by Equations 1 and 2.  

 

𝑅𝑅 = �
1 − 2(𝑞𝑞32 + 𝑞𝑞42) 2(𝑞𝑞2𝑞𝑞3− 𝑞𝑞1𝑞𝑞4) 2(𝑞𝑞2𝑞𝑞4 + 𝑞𝑞1𝑞𝑞3)
2(𝑞𝑞2𝑞𝑞3 + 𝑞𝑞1𝑞𝑞4) 1 − 2(𝑞𝑞22 + 𝑞𝑞42) 2(𝑞𝑞3𝑞𝑞4− 𝑞𝑞1𝑞𝑞2)
2(𝑞𝑞2𝑞𝑞4 − 𝑞𝑞1𝑞𝑞3) 2(𝑞𝑞3𝑞𝑞4 + 𝑞𝑞1𝑞𝑞2) 1 − 2(𝑞𝑞22 + 𝑞𝑞32)

�                          (1) 

 

𝑧𝑧 = 𝑅𝑅′𝑧𝑧′                                                                    (2) 

Where q1, q2, q3, and q4 are the quaternion from the initial transformation data; z and z' are global and 
local coordination data, respectively. 

Table 3. SmartRock parameters.  
Items Parameters 
Size 27×27×27 mm 

Weight 43 g 
Stress range 1-100 lb 

Orientation range 360 °C 
Accelerometer ±2 /±4/ ±8/ ±16 g 

Gyroscope ±250/ ±500/ ±1,000/ ±2,000 °/s 
Magnetometer ± 4,800 uT 
Sampling rate 0 ~ 200 Hz 

Temperature range 0 ~ 150 °C 

LABORATORY EXPERIMENTS 
The Superpave gyratory compactor (SGC) is a commonly used compactor in the laboratory. Owing to 

its internal angle, SGC can apply the shearing loading on the materials to better simulate the real roller 
compactor loadings. The AFG2 Pine gyratory compactor was utilized in this project. Its calibrated internal 
angle is 1.15°. The gyration speed is 30 rpm and the compaction pressure is 600 kPa. During compaction, 
the compactor can collect the compaction loadings, torque, and specimen height so that the compaction 
energy and resistances can be determined. To collect the particle kinematics during compaction, the 
SmartRock would be embedded in the center of the materials, since the most stable and representative 
particle rotation can be collected there [4]. To ensure it is at the center, half of the mixtures are first put in 
the mold, the SmartRock is then placed on the top and the remaining materials are added. SmartRock would 
collect the quaternion at a 17 Hz sampling frequency for its stability. To protect the SmartRock from water 
damage and potential imprecision for data collection, the specimen with the SmartRock cannot soak in the 
water to measure the density. Therefore, two types of specimens for each asphalt mixture were compacted: 
(a) Reference specimen: one specimen without the SmartRock was compacted to measure the bulk specific 
gravity (Gmb) of the specimen in accordance with the AASHTO T166. (b) Test specimen: three specimens 
with the SmartRock sensor were compacted to investigate the particle compaction characteristics. Each test 
specimen is deducted by 50 g mass from the Gmb of the test specimen to guarantee the same compaction 
condition as the references. The compaction experiment of the test specimen consists of the following steps: 
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(1)  check the connectivity of the SmartRock with the computer before compaction; collect the initial data 
on a horizontal platform for the coordinate transformation. 

(2)  Short-term age the loose mixtures for 2 hours at the desired compaction temperature.  
(3)  Compact the mixtures and collect the data during the whole compaction process. Meanwhile, the SGC 

compactor collects the loadings, torque, and height of the compacted specimens.  
(4)  Extract the SmartRock from the specimen after compaction and allow the sensor to cool down for the 

next series of tests. 

FIELD COMPACTION PROJECTS 
Three field compaction projects were carried out to investigate particle behaviors under roller 

compactions. These projects are different from the pavement structure, asphalt mixtures, design range of 
equivalent single-axle load (ESAL), etc.  

Hollidaysburg Project 
The Hollidaysburg project is a maintenance and rehabilitation project for asphalt pavement in 

Hollidaysburg, Pennsylvania. It is in collaboration with the Pennsylvania Department of Transportation 
(PennDOT) District 9 office and New Enterprise Stone & Lime Co. Inc. The original pavement was milled 
6.35 cm (2.5 inches) from the surface and overlaid with a 2.54-cm (1-inch) leveling course and a 3.81-cm 
(1.5-inches) wearing course. The wearing course mixture is a PG 64E-22 warm-mix asphalt (WMA) 
mixture with a nominal maximum aggregate size of 9.5 mm. Detailed information is presented in Table 4. 
To control the depth of the sensors in the pavement, the SmartRock is manually buried at the bottom of the 
top layer after the mixtures are placed by the asphalt paver. Static rollers and vibratory rollers were applied 
to the asphalt pavement. A 17-Hz sampling frequency is used to collect the quaternion of the sensor. A 
video camera recorded the entire compaction process for verification and analysis. The SmartRock 
installation and data collection are shown in Figure 4. 

 
Figure 4. Compaction data collection by the SmartRock system. 
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Table 4. Information on the asphalt mixtures used for field projects. 

 Hollidaysburg 
Project 

Altoona 
Project 

Indiana 
Project 

Mixture type WMA9.5 WMA9.5 HMA12.5 
Virgin binder PG 64S-22 PG64E-22 PG 64-22 
Virgin binder content 5.2% 5.1% 4.7% 
RAP content 15% 15% 25% 
Total binder content 6.1% 5.9% 5.9% 
Theoretical max specific gravity 2.480 2.469 2.496 
Gyration at Ndesign 75 100 50 

 

Altoona Project 
The Altoona project is a maintenance and rehabilitation project for asphalt pavement in Altoona, 

Pennsylvania. The original pavement was milled 6.35 cm (2.5 inches) from the surface and overlaid with a 
2.54-cm (1-inch) leveling course and a 3.81-cm (1.5-inches) wearing course. The mixture design of the 
wearing course is presented in Table 2, No. 8, and detailed information is provided in Table 4. SmartRock 
was manually buried at the bottom of the top layer for data collection. Eleven compaction cycles were 
applied to the asphalt pavement, including static roller and oscillatory roller (HD+ 120i VO Tandem Roller, 
as shown in Figure 5). The parameters of the oscillatory roller are presented in Table 2, and the oscillation 
frequency of this compactor is 36 Hz. The sampling frequency was set at 17 Hz and 100 Hz for collecting 
quaternion and acceleration, respectively. To investigate the relationship between the external and internal 
pavement responses, an accelerometer was fixed on the shaft of the vibratory roller to capture the 
acceleration during compaction (Figure 5). The sampling frequency of the accelerometer was 400 Hz. A 
camera also recorded the whole compaction process for the subsequent verification and analysis. 
SmartRock installation and data collection are shown in Figures 5 and 6. 

   
Figure 5. Roller compactor and SmartRock on the drum. 

   
Figure 6. SmartRock installation and data collection during compaction in the Altoona project. 
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Indiana Project 
The Indiana project is a newly constructed asphalt pavement in Angola, Indiana. The asphalt mixture 

used in this project is HMA-12.5 and detailed information is shown in Table 4. The target depth of the 
asphalt layer was 5.08 cm (2 inches). SmartRocks are buried at the bottom of the asphalt layer to collect 
the internal particle responses. Both static roller and vibratory roller (as shown in Figure 7) were applied 
for compaction. The same sampling frequencies of 17 Hz and 100 Hz were selected to collect the particle 
rotation and translation, respectively. An accelerometer with a 400-Hz sampling frequency was fixed on 
the vibratory rollers to collect the external responses. After the compaction, two core samples near the 
SmartRock were drilled out to measure the density of the pavement. The SmartRock installation and data 
collection are shown in Figure 8. 

 

  
Figure 7. Vibratory roller in Indiana project and the SmartRock on the roller.  

   
Figure 8. SmartRock installation and data collection in the Indiana project. 
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C H A P T E R  4  

Compaction Mechanism 

In this section, the particle kinematic behaviors, including the internal particle rotation and translation, 
and the external pavement responses, will be monitored by the SmartRock sensor. The compaction 
mechanism of the granular materials and asphalt mixture will be investigated under various compaction 
methods and conditions.  

GRANULAR PARTICLE KINEMATICS UNDER COMPACTION 

Particle Rotation and Density 
Compaction is a process of particulate material rearranging and consolidating in response to external 

mechanical forces (energy). The kinematic and mechanical properties of the mixture particle would present 
differently at different compaction stages. The correlations between the compactability and responses 
(external and internal) of the asphalt pavement were both studied by previous research. The external 
responses were collected and analyzed by IC technology. Because of the multilayered structure of the 
asphalt pavement, the external responses from the entire pavement structure are hardly related to the 
compactability of the sole asphalt layer. Comparably, the internal particle responses can represent the 
compaction behaviors of the asphalt material. With the aid of the SmartRock sensor, Wang et al. [4] found 
that the mixture particles rotated at a consistent period as the SGC compactor. Its cycle period is 2 seconds, 
which is consistent with the gyration patterns of SGC. In addition, the amplitude of the Euler angle is also 
different at various compaction stages. The amplitude decreases as the compaction proceeds, and the 
material becomes denser and stiffer. Based on that, the relative rotation was defined, which is the difference 
between the peak and the valley value in a single cycle (Figure 9). 

 

 
Figure 9. Illustration of the relative rotation [4]. 

Plotted in Figure 10 is the relative rotation curve of the FAA item P209 base material. Only 20 gyrations 
were conducted in case of breaking aggregates. It is worth noting that these two curves are similar in trend. 
The relative rotation is not smoother for lacking lubrication, but the relative rotation curve is still around 
the curve of the specimen height. Given the constant mass of the specimen during compaction, the height 
is also an indicator of the specimen density. The consistent trend between the particle's relative rotation and 
the height change of the specimen indicates that the relative rotation is highly related to the mixture's 
densification during compaction.  
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Figure 10. Comparison between relative rotation and specimen height for  

granular material compaction. 

Particle Rotation and Moisture Content 
The base material with the same gradation (as shown in Table 1) but various moisture contents was 

studied to investigate the effect of moisture on particle rotation during compaction. The optimum moisture 
content was first determined based on the standard protocol test. For the protection of the coarse aggregates 
and the limited water absorption of the coarse aggregates, aggregates larger than 4.75 mm were first sieved 
out and the rest of the materials were used to do the protocol test. The results are presented in Table 5 and 
Figure 11. The optimum moisture content for the granular material is 3.6%.  

Table 5. Determination of the optimum moisture content. 

Test 
No. 

Wet 
sample + 
Mold (g) 

Mold 
(g) 

Wet 
sample 

(g) 
Volume 

(cm3) 
Moisture 
content 

(fine) 

Moisture 
content 
(entire) 

Dry 
Unit 

Weight 
1 6,261.1 4,205.5 2,055.6 2,127 3.80% 1.70% 0.931 

2 6,315.5 4,205.5 2110 2,127 4.70% 2.10% 0.948 

3 6,403.9 4,205.5 2,198.4 2,127 6.50% 2.90% 0.971 

4 6,471.9 4,205.5 2,266.4 2,127 8.30% 3.70% 0.984 

5 6,403.1 4,205.5 2,197.6 2,127 10.10% 4.50% 0.939 
 

 
Figure 11. Determination of the optimum moisture content. 
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The granular material with a 2% and 4% moisture content was compacted in the study. To avoid cracking 
the aggregates, only 20 gyration cycles were applied to the materials. Two replicate samples for each 
scenario were compacted, and the average relative rotation curve was presented in Figure 12. It is worth 
noting that the relative rotation for the two curves is similar in trend and magnitude. The changing of the 
relative rotation is related to the densification of the material. At the beginning of the compaction, the 
relative rotation is large and the decrease is rapid, which is related to the dramatic particle rotation and 
material densification. Afterward, the relative rotation is stable with some variations, which is due to the 
rearrangement of the aggregate particles and the material's further densification. The similarity of the two 
curves indicates that under the moisture content of 2% and 4%, the water did not make obvious effects on 
the compactability of the granular material. The conclusions are based on the limited compaction 
experiments with two moisture contents. More experiments about the granular materials or asphalt mixtures 
are needed to verify these findings. 

 
Figure 12. Relative rotation at different moisture contents for granular material compaction. 

ASPHALT PARTICLE KINEMATICS UNDER LABORATORY COMPACTION 

Particle Rotation and Density 
To investigate the compaction mechanism of other particulate materials, the same gyratory compaction 

was also performed on the asphalt mixture. The relative rotation curve (the orange curve in Figure 12) 
depicts the compaction process of the asphalt mixture. At the beginning of the compaction (stage I, 
breakdown stage), asphalt mixture particles were loose and had limited contact. The shear and compression 
forces of SGC started to cause particles to rotate and coalesce. Particles had large relative rotation and a 
sharp reduction due to much compaction and height (density) reduction. After transitioning into stage II 
(main compaction stage), particle movement was restricted, as represented by the reduced relative rotation 
rate. However, compaction continued, resulting in further specimen height reduction. Starting from stage 
III (finishing stage), particle rotation was much restricted by the compacted structure, except following the 
regular rotation of the gyratory compactor. A very minimal height (density) change was further achieved. 
In other words, the mixture practically entered a locking point where most particles interlocked; additional 
compaction effort could have a very limited impact on density change. Compaction is most effective during 
the first and second stages. After the particles stabilize with constant relative rotation, the compaction 
approximates completion. The further increasing number of gyrations generally couldn't change the air void 
of the specimen because the particles have been interlocked, preventing them from additional relative 
rotation. 

Also plotted in Figure 13 is the height curve (blue curve) of the same mixture during compaction. It is 
worth noting that the height change of the specimen follows a similar trend. At the beginning of the 
compaction, the specimen was rapidly compacted because of the loose mixture properties, resulting in a 
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larger height decrease. Then the particles contact each other, and the increased shearing stress hinders 
further compaction, and the height decreases at a low rate and eventually reaches the end of the compaction. 
The consistent trend between the particle relative rotation and the height change of the specimen indicates 
that the relative rotation is highly related to the mixture's compaction; since the mass of the mixtures keeps 
unchanged, the height here is the same concept as the density and compactability of the asphalt mixture. 
Therefore, the particle kinematic behavior (particle rotation) is closely related to the mixture's density and 
could be used in the compaction prediction.  

 

 
Figure 13. Comparison between relative rotation and specimen height for  

asphalt material compaction. 

Particle Rotation and Asphalt Content 
The asphalt mixture with the same gradation (as shown in Table 2, No. 2) but various asphalt contents 

was studied to investigate the effect of asphalt content on particle rotation during compaction; 5.2% and 
6.0% asphalt content and three replicate samples for each scenario were compacted. To clarify, 6.0% asphalt 
content is the optimum asphalt content (OAC) for the mixture design; 5.2% asphalt content was compacted 
for the research. The average relative rotation curve is presented in Figure 14. It is worth noting that the 
relative rotation for two types of asphalt mixtures is similar in trend, which is consistent with the compaction 
theory, as elaborated in the last section. However, the magnitude of the relative rotation is affected by the 
asphalt content. More asphalt content results in a larger particle rotation during compaction. This conclusion 
is consistent with the engineering experience that asphalt acts like a lubricant to assist the aggregate bonding 
and to rotate under the compaction loadings. 

 

 
Figure 14. Relative rotation at different asphalt content for asphalt material compaction. 
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Particle Rotation and Compaction Temperature 
The asphalt mixtures with the same gradation (as shown in Table 2, mixtures No. 3 and No. 4) have 

been compacted at different temperatures to investigate the effect of temperature on particle rotation. Three 
replicate samples for each scenario were compacted. The average relative rotation curve is presented in 
Figure 15. As seen, the compaction temperature affected the particle rotation during compaction. Low-
temperature environment results in a smaller particle rotation, which is consistent with the engineering 
experience. Asphalt is the lubricant in asphalt mixture, low temperatures cause it to be thicker and more 
viscous, and that will prevent the particle rotation and compaction of the asphalt mixture. 

 

 
Figure 15. Relative rotation at different compaction temperatures for asphalt material compaction. 

Particle Rotation and WMA Additive 
Tests of the asphalt mixture with the same gradation (as shown in Table 2, mixtures No. 3 and No. 6) 

but different content of WMA additive were carried out to investigate the effect of WMA additive on 
particle rotation. The additive used here is a chemical additive, Evotherm M1. It can improve the coating 
of aggregates by reducing the surface energy of the aggregate/binder interface and the inner friction. Three 
replicate samples for each scenario were compacted. The average relative rotation curve is presented in 
Figure 16. It is worth noting that the relative rotation for two types of asphalt mixtures is similar, but the 
magnitude of the relative rotation is affected by the WMA additive. It is clear that the additive can increase 
the particle rotation compared with the virgin mixture (with 0% additive). Therefore, the WMA additive 
can improve the particle rotation and property of workability. 

 

 
Figure 16. Relative rotation for different content of WMA additive for asphalt material compaction. 
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ASPHALT PARTICLE KINEMATICS UNDER FIELD COMPACTION 

Comparison between Laboratory and Field Compaction 
Besides laboratory compaction, field compactions have also been conducted to investigate the 

compaction mechanism. The same asphalt mixture (No. 10 in Table 1) was used in both lab and field 
compaction. Figures 17 and 18 present the particle rotation observed under the gyratory and roller 
compactors. Under the vertical compaction loadings, the particle rotation presents higher values in the 
horizontal direction than in the vertical direction, regardless of the compaction method. It is noted that the 
general trend of the particle kinematic behaviors through the compaction process followed a similar three-
stage pattern for these two methods:  

  Stage I (breakdown stage): lab compaction (1st to 7th gyration) and field compaction (1st and 2nd 
cycle). This stage is short, but the most dramatic rotation and speedy decrease occur during this stage while 
the properties of the asphalt mixtures are loose. The fastest material densification also occurs in this stage. 
Stage II (main compaction stage): lab compaction (8th to 50th gyration) and field compaction (3rd to 8th 
cycle). Coarse aggregates begin to contact each other and form the skeleton. This stage is characterized by 
the imbalanced interaction between compaction loadings and particle shearing resistances. Most material 
densification occurs in this stage but at a relatively low speed. Stage III (finishing stage): lab compaction 
(after the 50th gyration) and field compaction (after the 8th cycle). The particle rotation is relatively stable 
and the interaction between compaction loadings and particle resistance reaches balance at this stage. 
Minimal densification but surface leveling occurs in this stage. 

 

 
Figure 17. Particle rotation curve under gyratory compaction for the Altoona project. 

 
Figure 18. Particle rotation under roller compaction for the Altoona project. 
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Particle Translation During Compaction 
   The particle kinematic behavior was analyzed based on the Altoona field project. The peak-peak 

acceleration is used in this section for analysis, which is the difference between the maximum and minimum 
acceleration under a single compaction cycle. Different compaction efforts have been identified based on 
the recorded video. As seen in Figure 19, the largest acceleration of the particles occurs during the 1st to 3rd 
and 7th to 9th cycle in the traffic direction. These cycles are compacted by the oscillatory roller, which can 
generate horizontal vibrations to knead and compact the materials. For the 4th to 6th cycle and the last two 
cycles, the vertical acceleration presented the largest value of the three directions. These responses are from 
the static roller, which uses its drum gravity to compact the pavement. By comparing the particle responses 
of these two compactors, it affirms that the vibratory mode of compaction is much more effective than the 
static mode.  

 
Figure 19. Internal particle acceleration for the Altoona project. 

Figures 19 and 20 present the acceleration responses from the vibratory roller and the static roller, 
respectively, for two field projects. To clarify, these two projects used different designs of roller 
compaction. For the Hollidaysburg project in Figure 20, static compaction was applied at the beginning of 
the compaction and followed by vibratory compaction. Comparably, the static compactions are applied 
between the vibratory compactions for the Altoona project in Figure 21. Comparison between these two 
scenarios demonstrates the effect of compaction sequences on the compactability of asphalt pavement. 

 
(a)                                                                        (b) 

Figure 20. Internal acceleration of the Hollidaysburg project under (a) vibratory roller compaction  
and (b) static roller compaction. 
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           (a)                                                                               (b) 

Figure 21. Internal acceleration of the Altoona project under (a) vibratory roller compaction  
and (b) static roller compaction. 

When the static rollers were performed at the beginning of the compaction, the particles' responses were 
more active (Figure 20b) than those applied after the vibratory compactions (Figure 21b). For the latter 
scenario in Figure 21, the static compaction has a minimal compaction effect. The responses under the static 
compactions don't show many fluctuations, which affirms that static compactions contribute to the surface 
smoothing instead of material densifications.  

Comparatively, the responses under the vibratory roller were not affected by the design of the 
compactions. As seen in Figure 20a and Figure 21a, the vibratory responses are similar even though 
different designs of vibratory compactions were applied in the two projects. In the beginning, for the loose 
status of the asphalt material, the particle moves limitedly under vibratory loadings (first cycle). As more 
compaction energies were applied, the formed skeleton and the connected stress chains resulted in dramatic 
particle motion in the second cycle. In addition, the shearing resistance gradually developed between 
particles, which caused the decrease of the particle motion afterward and eventually entered static at the 
end of the compaction. It's also worth noting that the particle responses at the 3rd cycle present distinctions 
between the two projects. This phenomenon might be because of the interaction between the compaction 
energy and particle shearing resistances. Based on the compaction theory of granular materials, the 
transition between the jamming condition to dynamic compaction results in motion variations. This 
transition usually occurs at the main compaction stage (from the 3rd to the 5th cycle). The variations of the 
particle behavior are related to the particle's engineering properties, the amount and intensity of the 
compaction energy, etc. [29].  

PAVEMENT RESPONSES AND ASPHALT COMPACTABILITY 

Concept of ICMV 
The external acceleration was originally analyzed in soil mechanics to assess the compaction quality 

[30, 31]. When the roller compactor is applied to the soft or uncompacted soil, the external responses 
collected on the roller are simple, and the energy is mainly distributed at the dominant (fundamental) 
frequency. As the soil becomes denser and stiffer, the response from the compacted materials becomes 
complex, and the energy is scattered at several frequencies, which are integral multiples of the dominant 
frequency [8]. A linear relationship between compaction meter value (CMV) and compaction control value 
(CCV) and materials' stiffness is identified, especially when the soil is at the optimum water content [3]. 
Based on this theory, Equations 3 and 4 are proposed to determine the compactability of the compacted 
materials [31]. Since the acceleration is initially collected in the time domain, a discrete Fourier transform 
is used to convert the acceleration from the domain of time to frequency. In this study, CMV and CCV were 
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used to quantify the compactability of the asphalt pavement based on the external responses collected by 
the accelerometer on the compactor drum in the Altoona project. 

                  𝐶𝐶𝐶𝐶𝐶𝐶 = 300 × 𝐴𝐴2𝛺𝛺
𝐴𝐴𝛺𝛺

                                                                      (3) 

𝐶𝐶𝐶𝐶𝐶𝐶 = 100 × 𝐴𝐴0.5𝛺𝛺+𝐴𝐴1.5𝛺𝛺+𝐴𝐴2𝛺𝛺+𝐴𝐴2.5𝛺𝛺+𝐴𝐴3
𝐴𝐴𝛺𝛺+𝐴𝐴0.5𝛺𝛺

                                                (4) 

Where AiΩ means the amplitude of the i multiplies the dominant frequency. 

Figure 22 shows the traffic-direction acceleration in the domain of time and frequency, respectively. 
The analysis was focused on the traffic direction, since oscillatory rollers generated the most significant 
vibration in the traffic direction. It is roughly axisymmetric by the 0-horizontal line and the peak 
acceleration is about 2 g (1 g = 9.8 m/s). The fast Fourier transform (FFT) is then performed, and the 
frequency-domain responses are shown in Figure 21b. After matching the time tags of the SmartRock and 
the accelerometer, six cycles of oscillatory compaction at the same location are selected. Considering the 
effective zone of the oscillatory roller, 4 seconds of acceleration data is used for the FFT analysis. In the 
frequency domain (Figure 21b), several frequencies have much stronger intensities than others, which 
centralize the most compaction energies. These spikes occur at around 36 Hz, 72 Hz, 108 Hz, etc., which 
are consistent with the dominant frequency of the oscillatory compactor.  

 

 
(a)                                                                                  (b) 

Figure 22. External acceleration in the domain of (a) time and (b) frequency. 

Correlation between Pavement Responses and Compactability 
Figure 23 compares the internal and external responses during compaction. To clarify, the internal 

particle responses were collected by the SmartRock sensor inside the pavement, while the external 
responses were collected by the accelerometer on the roller drum. The external response of the first cycle 
is not collected for practical reasons. It is worth noting that particle acceleration is related to material 
property and densification. The internal responses have been explained in the last section in Figure 21a. It 
shows the three compaction stages, and the change of the particle acceleration results from the material 
properties and densification. Comparably, the ICMV does not present a clear distinction at three stages. 
The ICMV increases first and reaches the peak in the 3rd cycle, which might be because the material became 
denser under compaction. The curve then decreases and maintains a relatively constant value. After 
comparison, the peak for ICMV occurs in the middle of the compaction.  

Solid conclusions cannot be made only based on the ICMV, which might be related to the influence 
depth of the vibratory roller, different support conditions, and the high damping ratio of the asphalt material. 
Some other factors, such as the changing temperature and the variation of the IC machines, would also 
affect the correlation. A certain relationship between the ICMV and the internal particle responses remains 
to be uncovered. Combining the previous findings about the ICMV, it's not recommended to evaluate the 
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compactability of asphalt pavement solely based on external responses. Jointly considering the internal and 
external responses is a more appropriate method for the quality control of asphalt compaction. 

 

 
(a)                                                                                    (b) 

Figure 23. Comparison between (a) internal responses and (b) external responses for  
the Altoona project. 
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C H A P T E R  5  

Prediction Model Development  

In this chapter, compaction prediction models are established based on the findings of the compaction 
mechanism. The model development includes the input variable selection, the output determination, and 
the algorithm selection for different predictive models. 

INPUT VARIABLE SELECTION 
Three parameters are investigated for their relationships with material densification. These three 

parameters are (1) particle kinematic behavior (particle relative rotation), which is collected by the 
SmartRock sensor; (2) mechanical parameter, which is recorded by the gyratory compactor; and (3) 
compaction energy applied to the paved materials. The definition of the particle relative rotation and the 
correlation between the particle rotation and the material density have been elaborated in Chapter 4. The 
other two parameters will be introduced below. 

Mechanical Parameter 
The compaction of the asphalt mixture is influenced by the contact and interlocking behaviors between 

aggregates [32]. The mechanical properties between particles were related to the particle rotation and 
interlocking during compaction, as well as the workability of the asphalt mixture. Compaction densification 
index (CDI), compaction force index (CFI), and normalized shear index (NSI) are the most common 
mechanical parameters to evaluate the workability of asphalt mixtures [33]. Because the CDI is calculated 
from the %Gmm and the %Gmm was for determining the compaction condition in this study, CDI is not 
suitable for the input of the model. CFI indicates how much resistive effort it overcame to compact the 
mixtures from the initial cycle to 92% Gmm, as shown in Figure 24. The resistive effort W is defined in 
Equation 5 [33]. NSI represented the work applied by the compactor to resist the frictional shear during 
compaction. In calculating the shear frictional resistance, it assumes the sample is fully constrained at any 
gyration and the energy due to surface traction is negligible [33]. The NSI can be known according to the 
conservation of energy by Equation 6. 

 
Figure 24. Illustration of CFI. 
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𝑊𝑊 = 4𝑒𝑒𝑒𝑒𝑒𝑒
𝑆𝑆ℎ

                                                                       (5) 
 

𝜏𝜏 = 𝑀𝑀+𝑒𝑒𝑆𝑆ℎ𝑒𝑒
𝑉𝑉

                                                              (6) 
 

Where S is the section area of the specimen, V is the volume of the specimen, θ is the tilting angle of the 
compactor, and is the same as the shear strain γ. Other notations can be found in Figure 25. 

 

 
Figure 25. Schematic diagram of the SGC compaction. 

Compaction Energy 
For the infrastructure material compaction in the lab and field, three compactors have been commonly 

used in practice and are also adopted in this research. They are the Superpave gyratory compactor (SGC), 
static roller compactor, and vibratory roller compactor. The determination of the compaction energy applied 
by these three compactors is explained below. 

The SGC can impart vertical loadings and constant shear forces throughout the asphalt mixture sample. 
The introduction of the gyration angle generates both shearing and kneading effects on the asphalt mixtures. 
Therefore, the total gyratory compaction energy per unit mass is the sum of the energy due to the vertical 
loading force (E1) and the moment by the eccentricity of the applied force (E2), as determined in Equation 
7 [34].  

Vibratory rollers can apply two types of compaction effort: the static weight by the weight of the drums 
and the frame and the dynamic impact force by a rotating eccentric weight located concentrically to the 
drum. The weight of the roller, compaction speed, and vibration condition (i.e., the frequency and amplitude 
of the vibration) would impact the compaction energy of the vibratory roller to the asphalt pavement. The 
compaction energy of the vibratory roller compactor per unit mass per compaction cycle can be determined 
based on Equation 8 [35]. The information on the vibratory rollers used for the two projects is presented in 
Table 6.  

The static roller uses its weight to compact the materials or level the surface at the beginning or finishing 
compaction. The weight of the static roller is the key factor in its compaction energy, which is determined 
based on Equation 9 [36]. The compaction energy of the static roller is also affected by the rolling resistance 
coefficient, which is determined based on the interaction material and the compaction process. For the 
asphalt pavement compaction project in Altoona, the static roller is used in the middle and end of the 
compaction. Based on the literature, 0.09 and 0.05 are selected as the rolling resistance coefficient for the 
middle and finishing phases, respectively [36]. 

 

𝐸𝐸 = 𝐸𝐸1 + 𝐸𝐸2 = 𝑒𝑒∗𝑆𝑆∗∆ℎ
𝑚𝑚

+ 4𝜋𝜋∗𝑒𝑒
𝑚𝑚

∑𝐶𝐶𝑖𝑖                                                    (7) 
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𝐸𝐸𝑣𝑣 = 𝑓𝑓
𝑣𝑣𝑣𝑣ℎ𝑏𝑏

∗ 2𝐴𝐴 ∗ (𝑅𝑅𝑅𝑅 + 𝜋𝜋𝐹𝐹𝑒𝑒
4

)                                                         (8) 

𝐸𝐸𝑠𝑠 = 𝑐𝑐 ∗ 𝑅𝑅𝑅𝑅
𝑣𝑣ℎ𝑏𝑏

                                                                      (9) 

Where P is the applied vertical force, S is the section area of the specimen, θ is the tilting angle, M is 
the moment by the eccentricity of the applied force, and m is the mass of the material. C is the rolling 
resistance coefficient, h is the depth of the material, b is the width of the roller drum, A is the amplitude of 
the roller vibration, f is the vibratory frequency, Fe is the centrifugal force of the roller, v is the speed of 
the roller, and R is the mass of the roller. 

Table 6. Information on the vibratory rollers. 
Machine Parameters Altoona Project Indiana Project 

Frequency (f) 42 Hz 45 Hz 
Speed (v) 1.3 m/s 0.7 m/s 
Density (ρ) 2,370

 
kg/m3 2,372 kg/m3 

Width (b) 1.98 m 1.8 m 
Amplitude (A) 0.88 mm 0.84 mm 

Weight (m) 12.2 t 18 t 
Centrifugal force (Fe) 159 KN 214.9 KN 

OUTPUT DETERMINATION 
The Superpave gyratory compactor (SGC) is used to compact the asphalt mixture in the laboratory. 

During the compaction, the Pine G2 SGC compactor monitored the compaction loading, torque, and height 
of the specimen at each gyration. The density or %Gmm of the specimen at each gyration can be determined 
by Equation 10.  For the field compaction, it is impractical to measure the density during the compaction. 
The pavement density would be measured after compaction by the core samples taken from the pavement 
and be used to verify the model prediction. Three dataset scenarios are also conducted to verify the 
robustness of machine learning models. 

(1) Scenario I: All compaction data serve as the training dataset to establish the model and test the 
prediction accuracy. 

(2) Scenario II: 70% of random compaction data serves as the training dataset, and the rest of the 30% of 
data points serve as the test dataset. 

(3) Scenario III: Eight mixture compaction data points are used to train the model, and the rest of the three 
mixtures' data points serve as the test dataset to test the prediction quality. 

 

%𝐺𝐺𝑚𝑚𝑚𝑚,𝑖𝑖 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒
ℎ𝑖𝑖

× 𝐺𝐺𝑚𝑚𝑚𝑚
𝐺𝐺𝑚𝑚𝑚𝑚

                                                               (10) 

 

Where %Gmm,i means the %Gmm of the specimen at ith gyration; hend means the height of the specimen 
when compaction ended; hi is the specimen height at ith gyration; Gmb is the bulk specific gravity of the 
specimen when the compaction ended; and Gmm is the maximum specific gravity of the asphalt mixture.  

MACHINE LEARNING MODEL 
Three machine-learning models will be built for different purposes and applications. These models 

are: (1) binary classification model, which is to select the appropriate input variables for the compaction 
prediction; (2) compaction classification model, which can predict the compaction condition and provide 
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information on different compaction categories based on the material density; and (3) density prediction 
model, which can predict the density value of the asphalt pavement.  

 

Binary Classification Model 
The SVM (support vector machine) was selected to build the binary classification model. It is a 

supervised machine-learning model for two-group classification problems. The purpose of the SVM is to 
find a plane that has the maximum margin (i.e., the maximum distance between data points of both classes) 
from the infinity of possible planes. If the original data can be separated linearly, the SVM would create a 
decision boundary (hyperplane) that can distinctly classify the N-dimensional data points [37]. If not, the 
SVM would create a new variable using the kernel function to move the original data to a higher dimension 
and do the nonlinear separation. The kernel function used in the SVM could be linear, polynomial, radial, 
etc. The data points that are closest to the hyperplane are the support vectors, which significantly influenced 
the position and orientation of the hyperplane. The SVM classifier is notable for its effectiveness in the 
high-dimensional data case, which is why it was selected in this study for the compaction prediction. The 
output of the SVM is two categories of compaction conditions: "Compaction Needed" and "Compaction 
Done." The selection of the density threshold (92% Gmm in this research) is based on the construction 
specification of PennDOT, which requires that the density of all 9.5-mm, 12.5-mm, 19-mm, and 25-mm 
wearing or binder courses be greater than 92% Gmm [38]. 

•  Compaction Needed: The mixture with the %Gmm is smaller than 92%. 
•  Compaction Done: The mixture with the %Gmm is greater than 92%. 

 

An SVM model is established to select the most suitable input variables for the compaction prediction. 
A total of 240 compaction data points from the same asphalt mixture (No. 1 in Table 1) were used for pre-
modeling. Since only one mixture was used, the mixture designs were not necessarily involved in the model. 
Five different models were established, and the prediction errors and accuracy are shown in Table 7. The 
errors and prediction came from Scenario I, where all data points served as the training dataset.  

Table 7. Pre-model results for input variables selection. 
No. Input Errors Accuracy (%) 

1 CFI + Temp 31/240 87.08 
2 CFI + Rotation + Temp 16/240 93.33 
3 Rotation + Temp 17/240 92.92 
4 NSI + Rotation + Temp 2/240 99.17 
5 Energy + Rotation 3/240 98.75 

Note: Temp is the compaction temperature. Rotation is the particle rotation during compaction. Energy is 
the accumulated compaction energy applied by the various compactors. 
 

Models No. 4 and No. 5 both presented great prediction accuracy, which indicated that the combination 
of the NSI, particle rotation, temperature, and combination of compaction energy and particle rotation are 
the desirable input variables for compaction prediction. For Input No. 4, the normalized shearing index 
(NSI) can be easily monitored and collected by the gyratory compactor. However, the shearing resistances 
of the particulate materials are impractical to collect. The temperature in Table 7 is the sensor temperature 
instead of the material temperature. The temperature inside the sensor is a bit lagging compared to the 
temperature of the material because of the isolation of the sensor shell. Comparably, the compaction energy 
can be determined by the weight and vibration information of the roller compactors. Therefore, Model No. 
5 was selected as the input for the compaction prediction. If more types of asphalt mixtures are included in 
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the model, the mixture design variables, such as the gradation and viscosity of the asphalt binder, should 
also be considered when evaluating the mixture's compactability. Eventually, the inputs of the machine 
learning model include:  
(1)  particle kinematic behavior, which is the relative rotation. 
(2)  accumulated compaction energy per unit mass 
(3)  mixture design information, which includes the mixture type, gradation, binder, etc. 

 

Compaction Classification Model 
Based on binary prediction experiences and the multicategory classification condition, multinomial 

logistic regression (MLR) was selected as the machine learning algorithm for the compaction classification 
model [39]. It is an extension of binary logistic regression that allows for more than two categories of the 
dependent variable. Binary logistic regression models a relationship between predictor variables and a 
categorical response variable. It is an extension of the linear regression model for classification problems. 
LR gives the probability between 0 and 1 based on the sigmoid function as presented in Equation 11 [40]. 
To predict which class a unit of data belongs to, a possibility threshold would be set. Like binary logistic 
regression, MLR uses maximum likelihood estimation to evaluate the probability of categorical 
membership. In the multicategory prediction, a reference category is selected, and a series of binary logistic 
regressions would be performed for the remaining categories to determine which class the data belongs to. 
One of the most significant advantages of logistic regression is that it is not only a classification model but 
also gives probabilities for each prediction. Knowing the likelihood of an event can offer more insights than 
the classification alone. 

𝑃𝑃(𝑥𝑥) = 1

1+𝑒𝑒−� ∑𝛽𝛽𝑖𝑖𝑥𝑥+𝛽𝛽0 �                                                                (11) 

 

Different categories of compaction conditions of the asphalt mixture/pavement will be the output of the 
compaction classification model. The outputs of the model are five groups of compaction conditions in 
terms of the volumetric property: "Far under compaction," "Under compaction," "Good compaction," 
"High-density compaction," and "Over compaction." The determination of the threshold is based on the 
construction specification of PennDOT with the Percent Within Limits (PWL) [38]. The threshold in real 
practice is adjustable to the agency's requirements. Two predictive levels are considered in the paper, (1) 
classification with a fixed threshold value based on the %Gmm and (2) classification with a buffer zone. 
Details of these two predictive levels are explained in Table 8 and below.  

(1) Classification with a fixed threshold value: 
•  Far under compaction (Class 1): The mixture with the %Gmm is less than 88%. 
•  Under compaction (Class 2): The mixture with the %Gmm is between 88% and 91%. 
•  Good compaction (Class 3): The mixture with the %Gmm is between 91% and 93%. 
•  High-density compaction (class 4): The mixture with the %Gmm is between 93% and 96%. 
•  Over compaction (Class 5): The mixture with the %Gmm is greater than 96%. 

 
(2) Classification with a buffer zone: 
•    Compaction category: The %Gmm of the asphalt mixture that is beyond the ±0.5%Gmm of the threshold 

must be classified to the corresponding category. 
•    Buffer Zone: The %Gmm of the asphalt mixture that is within the ±0.5%Gmm of the threshold is 

acceptable to be classified in either neighbor category. 
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Table 8. Output category and density for the compaction classification model. 
1 Far under compaction < 88%Gmm 

2 Under compaction 88%-91% Gmm 

3 Good compaction 91%-93% Gmm 
4 High-density compaction 93%-96% Gmm 

5 Over compaction > 96%Gmm 
 
In MLR modeling, 11 asphalt mixtures, a total of 32 specimens with 4,154 compaction points, are used 

to build the prediction model. Because of the limited paper space, only partial data are displayed in Table 
9. The first 7 columns of data serve as the inputs. The column "target" serves as the output for the model; 
1~5 here represents the "Class 1~5" in terms of their volumetric property. The column "%Gmm" is for 
determining the compaction condition (i.e., the column "target"). Based on the %Gmm of specimen at each 
gyration, 364 data points are categorized as "Far under compaction" (class 1), 342 data points are 
categorized as "Under compaction" (class 2), 439 data points are categorized as "Good compaction" (class 
3), 1,316 data points and 1,693 data points are categorized to "High-density compaction" (class 4) and 
"Over compaction" (class 5), respectively.  

Density Prediction Model 
Artificial neural network (ANN) is one of the fastest-growing artificial intelligence (AI) techniques 

[41]. It is inspired by an animal's central nervous system and intended to simulate the behavior of biological 
systems composed of "neurons." For the advancements in data science and computing capacity, ANN has 
been applied to process complex problems in pavement construction and performance prediction [42, 43]. 
A neural network usually contains the input layer, hidden layers, and output layer, as shown in Figure 25. 
The input and output layer are to feed raw information into the network and provide the prediction from the 
algorithm. The hidden layer connects the input and output and determines the activity of each hidden unit 
by calculation algorithms [41].  
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Table 9. Partial data of the compaction predictive model. 

Type Additive NMSA Binder Rotation 
(x) 

Rotation 
(y) Energy Target %Gmm 

1 0 9.5 76 1.176 1.493 140.0 1 84.16 
1 0 9.5 76 1.193 1.491 155.4 1 84.74 
1 0 9.5 76 1.169 1.499 170.7 1 85.26 
1 0 9.5 76 1.126 1.461 185.8 1 85.73 
1 0 9.5 76 1.121 1.500 201.0 1 86.19 
1 0 9.5 76 1.146 1.170 363.0 2 89.48 
1 0 9.5 76 1.163 1.168 377.5 2 89.70 
1 0 9.5 76 1.155 1.100 392.0 2 89.91 
1 0 9.5 76 1.154 1.112 406.3 2 90.06 
1 0 9.5 76 1.169 1.088 420.8 2 90.28 
1 0 9.5 76 1.140 0.907 620.9 3 92.24 
1 0 9.5 76 1.150 0.895 635.4 3 92.40 
1 0 9.5 76 1.149 0.894 649.7 3 92.48 
1 0 9.5 76 1.157 0.893 663.9 3 92.55 
1 0 9.5 76 1.145 0.871 678.5 3 92.71 
1 0 9.5 76 1.143 0.890 692.8 3 92.79 
1 0 9.5 76 1.151 0.827 807.1 4 93.49 
1 0 9.5 76 1.139 0.812 821.4 4 93.57 
1 0 9.5 76 1.149 0.804 835.6 4 93.65 
1 0 9.5 76 1.138 0.788 849.8 4 93.73 
1 0 9.5 76 1.118 0.807 864.0 4 93.81 
1 0 9.5 76 1.125 0.791 878.2 4 93.89 
1 0 9.5 76 1.127 0.803 892.4 4 93.97 
1 0 9.5 76 1.108 0.767 906.6 4 94.05 
1 0 9.5 76 0.682 0.981 1,511.9 5 96.10 
1 0 9.5 76 0.667 1.002 1,526.1 5 96.18 
1 0 9.5 76 0.656 0.993 1,540.1 5 96.18 
1 0 9.5 76 0.652 0.979 1,554.3 5 96.26 
1 0 9.5 76 0.656 0.980 1,568.3 5 96.26 
1 0 9.5 76 0.646 0.989 1,582.2 5 96.26 
1 0 9.5 76 0.627 0.981 1,596.4 5 96.35 
1 0 9.5 76 0.661 0.990 1,610.3 5 96.35 

Note: "Type" represents the type of asphalt mixture. 0 is the HMA, and 1 is the WMA. "NMAS" is the nominal 
maximum aggregate size, and the "Binder" is the high-temperature performance grade of the virgin binder. "Energy" 
is the accumulated compaction energies that are applied to the material from the beginning. 
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Figure 26. Configuration of the artificial neural network. 

In ANN modeling, the same 11 asphalt mixtures and 4,154 compaction points are used to establish the 
prediction model. Like the MLR modeling, the First 7 columns in Table 9 serve as the inputs, which means 
7 neurons in the input layer. The column "%Gmm" serves as the output for the model. The predictive quality 
can be obtained by comparing the specimen density with the ANN prediction results. 
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C H A P T E R  6  

Compaction Prediction 

The prediction results of the compaction classification model and the density prediction model will be 
presented in this section. The models are built and calibrated by the lab compaction data, then used for the 
field compaction prediction. The 4,154 compaction points from the gyratory compaction are used for the 
model establishment and calibration; 2 field project data are adopted for model verification. 

COMPACTION CLASSIFICATION MODEL 

Laboratory Compaction Prediction 
The MLR model is established and calibrated by the lab compaction data. Considering the imbalanced 

distribution of the classification categories, sensitivity, specificity, and accuracy are calculated to evaluate 
the prediction quality. The calculations of three metrics are presented in Table 10 and Equations 12–14. 

Table 10. Prediction configuration of the MLR model. 

Prediction 
(Model) 

Reference 
(%Gmm) 
Class 1 

Reference 
(%Gmm) 
Class 2 

Reference 
(%Gmm) 
Class 3 

Reference 
(%Gmm) 
Class 4 

Reference 
(%Gmm) 
Class 5 

Class 1 True (A11) False (A12) False (A13) False (A14) False (A15) 
Class 2 False (A21) True (A22) False (A23) False (A24) False (A25) 
Class 3 False (A31) False (A32) True (A33) False (A34) False (A35) 
Class 4 False (A41) False (A42) False (A43) True (A44) False (A45) 
Class 5 False (A51) False (A52) False (A53) False (A54) True (A55) 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 𝑘𝑘 = 𝐴𝐴𝑘𝑘𝑘𝑘

∑ 𝐴𝐴𝑖𝑖𝑘𝑘5
𝑖𝑖=1

�                                                        (12) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑜𝑜𝑆𝑆𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 𝑘𝑘 = (∑ 𝐴𝐴𝑖𝑖𝑖𝑖5
𝑖𝑖=1 − 𝐴𝐴𝑘𝑘𝑘𝑘)

(∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖5
𝑖𝑖=1

5
𝑖𝑖=1 − ∑ 𝐴𝐴𝑖𝑖𝑘𝑘5

𝑖𝑖=1 )�                       (13) 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝐶𝐶𝑐𝑐𝑆𝑆 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖5
𝑖𝑖=1

∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖5
𝑖𝑖=1

5
𝑖𝑖=1

�                                                         (14) 

The prediction results of the MLR model under different scenarios are shown in Table 11. Most 
predictions have more than 90% accuracy when fixed thresholds are used for prediction. Errors are greatly 
reduced when the buffer zone is set, indicating that most of the errors occur near the thresholds. For 
scenarios II and III, in which the test dataset is different from the corresponding training dataset, satisfactory 
prediction quality is also achieved. That reveals the robustness of the MLR model for the compaction 
prediction and the appropriate selection for the input variables. Conclusively, the intelligent method using 
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a machine learning algorithm is a practical method to predict the compaction condition of the asphalt 
specimen in the lab. 

Table 11. Lab compaction prediction for the MLR model. 
Scenario/Parameters Class 1 Class 2 Class 3 Class 4 Class 5 

 No buffer 
zone 

No buffer 
zone 

No buffer 
zone 

No buffer 
zone 

No buffer 
zone 

I 
Accuracy (error) 

92.87% 
(296/ 
4,154) 

92.87% 
(296/ 
4,154) 

92.87% 
(296/ 
4,154) 

92.87% 
(296/ 
4,154) 

92.87% 
(296/ 
4,154) 

Sensitivity (%) 96.15 89.77 88.16 91.57 95.04 
Specificity (%) 99.60 99.16 98.55 95.84 96.87 

II 
Accuracy (error) 

93.58%  
(80/ 

1,247) 

93.58%  
(80/ 

1,247) 

93.58% 
(80/ 

1,247) 

93.58% 
(80/ 

1,247) 

93.58% 
(80/ 

1,247) 
Sensitivity (%) 97.98 88.54 91.20 93.47 94.30 
Specificity (%) 99.39 99.48 98.66 95.60 98.01 

III 
Accuracy (error) 

91.75% 
(119/ 
1,442) 

91.75% 
(119/ 
1,442) 

91.75% 
(119/ 
1,442) 

91.75% 
(119/ 
1,442) 

91.75% 
(119/ 
1,442) 

Sensitivity (%) 97.96 88.64 86.98 85.91 98.55 
Specificity (%) 99.07 98.63 98.98 98.50 93.53 

 
Buffer  
zone  
setup 

Buffer 
zone 
setup 

Buffer 
zone 
setup 

Buffer 
zone 
setup 

Buffer 
zone 
setup 

I 
Accuracy (error) 

99.64%  
(15/ 

4,154) 

99.64% 
(15/ 

4,154) 

99.64% 
(15/ 

4,154) 

99.64% 
(15/ 

4,154) 

99.64% 
(15/ 

4,154) 
Sensitivity (%) 99.18 98.54 99.77 99.77 99.82 
Specificity (%) 99.68 99.74 99.62 99.58 99.51 

II 
Accuracy (error) 99.76% 

(3/1,247) 
99.76% 

(3/1,247) 
99.76% 

(3/1,247) 
99.76% 

(3/1,247) 
99.76% 

(3/1,247) 
Sensitivity (%) 100 99.42 100 100 99.94 
Specificity (%) 99.92 99.97 99.92 99.89 99.92 

III 
Accuracy (error) 99.38% 

(9/1,442) 
99.38% 
(9/1,442 

99.38% 
(9/1,442 

99.38% 
(9/1,442 

99.38% 
(9/1,442 

Sensitivity (%) 100 98.83 99.77 99.70 100 
Specificity (%) 99.76 99.87 99.78 99.82 99.63 

 

Field Compaction Prediction 
As elaborated in Figures 17 and 18, the lab compaction and field compaction can be connected by the 

particle kinematic behavior (particle rotation) during compaction, which is the basis of developing the field 
compaction monitoring method. As shown in Equation 15, the Pearson correlation coefficient was 
calculated based on the average particle rotation under the same amount of compaction energies for two 
compactions. The Pearson correlation coefficient is 0.806, which means the high correlation between the 
gyratory and roller compaction. 

                                                     (15) 
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Where r is the Pearson correlation coefficient; xi is the particle rotation under gyratory compaction; 𝒙𝒙 is 
the mean of the x sample; yi is the particle rotation under roller compaction; 𝒚𝒚  is the mean of the y sample.  

Given the high correlation between the gyratory and roller compaction, it is reasonable to predict the 
field compaction condition using the intelligent model trained by the lab data. The input information and 
the prediction results of the two field projects are presented in Table 12. These two projects use different 
asphalt mixtures and pavement structures and different roller compaction patterns. For the Altoona project, 
a total of 11 compaction cycles were applied. It is noted that the "Far under compaction" category is 
predicted at the beginning for its limited energy and large particle rotations. The skeleton then forms as 
more energy is applied, which hinders the rotation of the internal particles, hence the "Under compaction" 
is predicted. The compaction eventually enters the "Good compaction" category when enough energy is 
used, and stable particle rotation is achieved. Two pavement cores near the SmartRock sensor are taken out 
to check the density, which is 93.1% Gmm and 93.6% Gmm, which is at the buffer zone between the "Good 
compaction" and "High density compaction" categories. 

For the Indiana project, two vibratory compactions and one pass of static compaction were applied. The 
last cycle of static compaction is missing due to technical reasons. Based on the compaction experiences, 
the static compaction at the end serves more like leveling and limited densification is achieved. Table 12 
indicates that the compaction has entered the "Under compaction" category when the first vibration is 
applied. The pavement is predicted to the "Good compaction" after the two vibratory cycles. Two pavement 
cores are drilled out to check the density after compaction. The density of the core samples near the 
SmartRock is 92.8% Gmm and 92.5% Gmm, which is in the volumetric range of the "Good compaction" 
category. Two field projects verified that it is practical and promising to predict pavement compactability 
by the machine learning algorithm. The particle rotation of the lab compaction could be used to predict the 
field compaction condition if the intelligent model was appropriately trained.  

Table 12. Field compaction prediction based on the MLR model. 

Type Additive NMSA Binder Rotation 
(x) 

Rotation 
(y) Energy Roller Prediction 

Altoona Project 
1 0 9.5 76 3.03 1.15 77.9 V Class 1 
1 0 9.5 76 1.45 0.44 155.9 V Class 1 
1 0 9.5 76 0.10 0.96 233.8 V Class 1 
1 0 9.5 76 0.55 0.43 298.4 S Class 1 
1 0 9.5 76 0.66 0.46 363.1 S Class 2 
1 0 9.5 76 1.10 0.48 427.7 S Class 2 
1 0 9.5 76 1.00 1.30 505.7 V Class 2 
1 0 9.5 76 0.03 0.08 583.6 V Class 3 
1 0 9.5 76 0.56 0.20 661.6 V Class 3 
1 0 9.5 76 0.41 0.42 697.5 S Class 3 
1 0 9.5 76 0.18 0.36 733.4 S Class 3 

Indiana Project 
0 0 12.5 64 8.17 2.05 229.7 V Class 2 
0 0 12.5 64 3.59 1.04 459.4 V Class 3 

Note: Roller "V" and "C" mean vibratory and static roller compaction; Class "1," "2,” and “3” represent “Far under 
compaction”, “Under compaction” and “Good compaction”, respectively. 
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DENSITY PREDICTION MODEL 

Laboratory Compaction Prediction 
Another prediction model, the density prediction model, was built to predict the density value of the 

asphalt pavement. For the lab compaction, the specimen density can be obtained by the height of the 
specimen and the final density; the prediction quality of the model can thus be quantified by comparing the 
density of the SGC measurement and the prediction from the ANN model. The mean relative error (MRE) 
and root mean square error (RMSE) are used for the prediction evaluation. Their calculations are as shown 
in Equations 16 and 17. Typically, the larger value of the MRE and larger value of RMSE indicate more 
variation between the prediction and true value, and thus lower prediction accuracy. 

 

𝐶𝐶𝑅𝑅𝐸𝐸 = 1
𝑛𝑛

 ∑ |𝑌𝑌𝑖𝑖−𝑋𝑋𝑖𝑖|
𝑋𝑋𝑖𝑖

𝑛𝑛
𝑖𝑖=1 × 100%                                                     (16) 

𝑅𝑅𝐶𝐶𝑆𝑆𝐸𝐸 = �1
𝑛𝑛

 ∑ (𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                      (17) 

Where Yi is the predictive density at the ith measurement; Xi is the specimen density at the ith 
measurement. n is the number of measurements.  

Based on the experiences of the ANN modeling, two hidden layers can handle most prediction problems 
at a high processing efficiency and also avoid overfitting [44]. The number of neurons hidden can be 
selected between the numbers of input and output neurons [44]. Therefore, several configurations of ANN 
models are built as shown in Table 13 to test the prediction accuracy. To clarify, the number series 7-6-5-1 
means the number of neurons in the input layer, (first and second) hidden layer, and output layer. 
Configurations 7-5-3-1, 7-5-2-1, and 7-4-2-1 cannot converge the prediction at the set numbers of steps 
because of the inefficient calculation; their results are not presented in the table. Eventually, the 
configuration of 7-6-3-1 is selected based on its smallest RMSE and MRE. 

Table 13. Prediction comparison for different ANN configurations. 
Configuration  

of ANN RMSE MRE (%) 

7-6-5-1 0.3743 0.2987 
7-6-4-1 0.3741 0.3054 
7-6-3-1 0.3649 0.2954 
7-6-2-1 0.3752 0.3013 
7-5-4-1 0.3788 0.3072 
7-4-3-1 0.3718 0.3037 

 

The prediction results of the MLR model under different scenarios are shown in Figures 27–29 and 
Table 14. All of the prediction errors are smaller than 1% MRE and 0.5 RMSE. The satisfactory prediction 
quality is also achieved even for Scenarios II and III in which the test dataset is different from the 
corresponding training dataset. These results affirm the appropriate selection for the input variables and the 
robustness of the ANN model for the compaction prediction. 
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Figure 27. Comparison between the specimen density and ANN prediction for Scenario I. 

 
Figure 28. Comparison between the specimen density and ANN prediction for Scenario II. 

 
Figure 29. Comparison between the specimen density and ANN prediction for Scenario III. 

Table 14. Prediction of ANN model for different data scenarios. 
Scenario Training Testing RMSE MRE (%) 

I All data points All data points 0.26 0.32 
II 70% random data points Rest 30% of data points 0.30 0.39 
III 8 mixtures of data points Rest 3 mixtures data points 0.48 0.60 
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Field Compaction Prediction 
The prediction results of the two field projects by the density prediction model are shown in Table 15. 

It is noticed that reasonable density has been predicted from the beginning to the end of the compaction for 
both field projects, even though the numbers of compaction cycles, pavement structure, and materials are 
different. The cores were drilled from both projects at the end of the compaction, and the density of the 
pavement cores is presented in Table 15. For the Altoona project, the density near the SmartRock is 93.1% 
and 93.6% Gmm, which is close to the prediction, 93.1% Gmm. For the Indiana project, the density near 
the SmartRock is 92.5% and 92.8% Gmm, which is also close to the prediction, 93.1% Gmm. The prediction 
errors for both projects are within 0.5% MRE, which further confirms the practicality and feasibility of the 
ANN model to predict the density of the asphalt pavement. The concept of using the lab compaction data 
to predict the density in the field is also workable. 

Table 15. Field compaction prediction based on the ANN model. 
Project Altoona Project 

Cycle 1 2 3 4 5 6 7 8 9 10 11 
Roller V V V S S S V V V S S 
ANN 78.2 83.7 88.3 88.8 89.8 90.3 91..4 92.2 92.4 92.8 93.1 

Project Indiana Note: 
Core density is the density of the core sample (%Gmm) for verification. 
Core density for Altoona Project is 93.1%, 93.6% Gmm. 
Core density for Indiana Project is 92.5% and 92.8% Gmm. 

Cycle 1 2 
Roller V V 
ANN 91.7 93.1 
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C H A P T E R  7  

Conclusions and Future Work 

This project focuses on the compaction of infrastructure materials, mainly asphalt mixtures and granular 
materials. It aims to investigate the compaction mechanism and develop an intelligent compaction 
monitoring system to predict the density of asphalt pavement. Several lab experiments and field projects 
have been conducted to study particle kinematic behaviors under various compactions. After understanding 
the particle behaviors under the compaction loadings, a novel compaction monitoring system is established 
and calibrated by the laboratory compaction data to predict the density of field asphalt pavement. Several 
findings have been discovered. 

(1) The design of the roller compaction would affect the particle kinematic behaviors during compaction. 
Static compaction contributes limited densification to the asphalt pavement, especially applied after the 
vibratory compaction. The vibratory compaction response is more associated with the material’s 
density and not affected by the compaction sequence pattern, which makes the vibratory response an 
appropriate parameter to evaluate the compactability of the asphalt pavement. 

(2) Similar three-stage compaction patterns are identified for both lab and field compaction in terms of 
particle rotation in the horizontal direction: breakdown stage, main compaction stage, and finishing 
stage. Different compaction stages are related to the material's properties and the interactions between 
the compaction loadings and particle shearing resistances. The largest particle rotation occurs in the 
breakdown stage. The main compaction stage is characterized as the imbalanced interaction between 
the compaction loadings and particle shearing resistance. The finishing stage produces more 
leveling/smoothing effect than compaction, since only minimal densification occurs in this stage. 

(3) The ICMV is calculated based on the IC theory, which collects the external responses from the entire 
pavement structure by the accelerometer on the vibratory roller. No specific correlations are found 
between the ICMV from the roller compactor and the particle acceleration from the internal asphalt 
material layer. It is recommended to evaluate the compactablity of asphalt pavement by jointly 
considering the internal and external responses during compaction.  

(4) The particle-size wireless sensor, SmartRock, was used in the project to collect the particle kinematic 
behaviors during compaction, such as particle rotation, acceleration, etc. These parameters are related 
to the compactability of the materials and are used for density evaluation and prediction. The 
SmartRock sensor is an appropriate microelectromechanical systems (MEMS) device to realize smart 
compaction.  

(5)  A modified version of the logistic regression, multinominal logistic regression (MLR), is applied to 
classify the compaction condition of the asphalt pavement. An artificial neural network (ANN) model 
is developed to predict the density of the asphalt pavement. The prediction results show that both the 
compaction classification model and the density prediction model are appropriate and promising to 
predict the compaction conditions of asphalt pavement using the particle rotation, compaction energy, 
and mixture design information as the input variables. 

(6) Two field compaction projects have been conducted to verify the robustness of the compaction 
prediction models. Although the model is built and calibrated only by the lab compaction data, 
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reasonable compaction density conditions are predicted for both projects. It is noted that these two 
projects used different materials under distinct pavement structures and compaction patterns. The 
results confirm that the lab and field compaction can be reasonably connected by particle rotation and 
using the lab data to predict the field compaction conditions is feasible. 

(7) The quality control of asphalt pavement compaction is affected by many factors. The results and 
conclusions in this study are based on the 11 asphalt mixtures in the lab compaction and 3 field projects, 
which is far from enough. Future studies and simulations that include more types of asphalt mixtures, 
compaction designs, and pavement structures are recommended to assess the concept of the compaction 
mechanisms and evaluate the robustness of the compaction models. 

(8) This project applies a SmartRock sensor to monitor and predict the compaction condition and density 
of the asphalt pavement. The sensor application could be limited to localized spots and be challenging 
to achieve full coverage. Considering the advantages of the IC technology with full pavement coverage, 
integrating the smart compaction monitoring system and the IC technology could be promising in the 
future to achieve a more advanced compaction monitoring program for asphalt pavement construction. 
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